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Abstract
The discontinuous dependence of the properties of a quantum game on its
entanglement has been shown to be very much like phase transitions viewed in
the entanglement-payoffdiagram (J Du et al 2002 Phys. Rev. Lett. 88 137902).
In this paper we investigate such phase-transition-like behaviour of quantum
games, by suggesting a method which would help to illuminate the origin of
such a kind of behaviour. For the particular case of the generalized Prisoners’
Dilemma, we find that, for different settings of the numerical values in the
payoff table, even though the classical game behaves the same, the quantum
game exhibits different and interesting phase-transition-like behaviour.

PACS numbers: 03.67.−a, 02.50.Le

1. Introduction

The theory of quantum games is a new field which combines classical game theory and
quantum information theory, opening a new range of potential applications. Recent research
has shown that quantum games can outperform their classical counterparts [1–11]. Eisert
et al investigated the quantization of the famous game of Prisoners’ Dilemma [4]. Their
result exhibits the surprising superiority of quantum strategies over classical ones and the
players can escape the dilemma when they both resort to quantum strategies. Marinatto and
Weber studied the quantum version of the Battle of the Sexes game and found that the game
can have a unique solution with entangled strategy [5]. Besides two player quantum games,
works on multiplayer games have also been presented [6, 7]. In a recent paper of Benjamin
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and Hayden, they showed that multiplayer quantum games can exhibit certain forms of pure
quantum equilibrium that have no analogue in classical games, or even in two player quantum
games [6]. Although most of the works are focused on maximally entangled quantum games,
a game of varying entanglement is also investigated [9, 10]. For the particular case of the two-
player quantum Prisoners’ Dilemma, two thresholds for the game’s entanglement are found,
and the phenomena which are very much like phase transitions are also revealed. Even though
quantum games are played mostly on paper, the first experimental realization of quantum
games has also been implemented on a NMR quantum computer [11].

In this paper, we investigate the phase-transition-like behaviour of quantum games, using
a proposed method which would help to illuminate the origin of such a kind of behaviour.
For the generalized version of Prisoners’ Dilemma, we find that, with different settings
of the numerical values for the payoff table, even though the classical game behaves the
same, the quantum game behaves very differently and exhibits interesting phase-transition-
like behaviour in the entanglement-payoff diagram. We find thresholds for the amount of
entanglement that separates different regions for the game. The properties of the game
change discontinuously when its entanglement goes across these thresholds, creating the
phase-transition-like behaviour. We present an investigation for both the cases where the
strategic space is restricted as in [4] and the case where the players are allowed to adopt any
unitary operations as their strategies. In the case where the strategic space is restricted, the
phase-transition-like behaviour exhibits an interesting variation with respect to the change of
the numerical values in the payoff table, and so does the property of the game. In the case
where the players are allowed to adopt any unitary operations, the game has a boundary, being
a function of the numerical values in the payoff table, for its entanglement. The quantum
game has an infinite number of Nash equilibria if its entanglement is below the boundary,
otherwise no pure strategic Nash equilibrium could be found when its entanglement exceeds
the boundary.

The proposed method would help to illuminate the origin of such a kind of phase-
transition-like behaviour. In this method, strategies of players correspond to unit vectors
in some real space, and the search for Nash equilibria includes a procedure for finding the
eigenvector of some matrix that corresponds to the maximal eigenvalue. In the particular
case presented in this paper, the eigenvalues are functions of the amount of entanglement, and
thus there can be an eigenvalue-crossing. Crossing an eigenvalue-crossing point makes the
eigenvector that corresponds to the maximal eigenvalue change discontinuously, indicating the
discontinuous change of the properties of the quantum game, as well as the phase-transition-
like behaviour.

2. Quantization of the generalized Prisoners’ Dilemma

The classical Prisoners’ Dilemma is the most widely studied and used paradigm as a non-
zero-sum game that could have an equilibrium outcome which is unique, but fails to be Pareto
optimal. The importance of this game lies in the fact that many social phenomena with which
we are familiar seem to have Prisoner’s Dilemma at their core. The general form of the
Prisoners’ Dilemma [12]5 is shown as in table 1, with suggestive names for the strategies and

5 The original general Prisoners’ Dilemma has an additional condition, r > (s + t)/2, besides t > r > p > s.
This additional condition guarantees that even in an iterated game, the players would be at least as well off always
playing (C,C) as alternating between (C,D) and (D,C). So the strategy profile (C,C) is Pareto optimal in both
static and iterated games. In this paper we focus on the study of static games, so it is unnecessary for us to consider
this additional condition.
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Figure 1. The physical model for two player quantum Prisoners’ Dilemma.

Table 1. The general form of the Prisoners’ Dilemma. The first entry in parentheses denotes the
payoff of Alice and the second entry denotes the payoff of Bob. The entries in this table should
satisfy conditions: t > r > p > s (see in [12]). The meaning of the symbols in the table is as
follows. C: cooperate; D: defect; r: reward; p: punishment; t: temptation; s: sucker’s payoff.

Bob: C Bob: D

Alice: C (r, r) (s, t)

Alice: D (t, s) (p,p)

payoffs. The condition t > r > p > s guarantees that strategy D dominates strategy C for
both players, and that the unique equilibrium at (D,D) is Pareto inferior to (C,C).

The physical model of the quantum Prisoners’ Dilemma was originally proposed by Eisert
et al as shown in figure 1. Together with the payoff table for the general Prisoners’ Dilemma,
the scheme can represent the generalized quantum Prisoners’ Dilemma. In this scheme the
game has two qubits, one for each player. The possible outcomes of the classical strategies
D and C are assigned to two bases |D〉 and |C〉 in the Hilbert space of a qubit. Hence the
state of the game at each instance is described by a vector in the tensor product space which is
spanned by the classical game bases |CC〉, |CD〉, |DC〉 and |DD〉, where the first and second
entries refer to Alice’s and Bob’s qubits, respectively. The initial state of the game is given by

|ψi〉 = Ĵ |CC〉 (1)

where Ĵ is a unitary operator which is known to both players. Strategic moves of Alice and
Bob are associated with unitary operators ÛA and ÛB, respectively, which are chosen from a
strategic space S. At the final stage, the state of the game is

|ψf 〉 = Ĵ †(ÛA ⊗ ÛB)Ĵ |CC〉. (2)

The subsequent measurement yields a particular result and the expected payoffs of the players
are given by {

$A = rPCC + pPDD + tPDC + sPCD

$B = rPCC + pPDD + sPDC + tPCD

(3)

where Pστ = |〈στ |ψf 〉|2(σ, τ ∈ {C,D}) is the probability that |ψf 〉 collapses into basis |στ 〉.
In the general case, strategies for players could be any unitary operations. However, since

the overall phase factor of |ψf 〉 will not affect the final results of the game, we can safely set
the strategic space S = SU(2) as in [4] and [6], without loss of generality.

As we know, an operator Û ∈ SU(2) can be written as

Û = w · Î 2 + x · iσ̂x + y · iσ̂y + z · iσ̂z (4)

with w, x, y, z ∈ [−1, 1] and w2 + x2 + y2 + z2 = 1. This enables us to represent Û directly
by a four-dimensional real vector

u = (w, x, y, z) ∈ R
4 (5)

with u · uT = w2 + x2 + y2 + z2 = 1 (superscript T denotes transpose), and its components are
denoted as u1 = w,u2 = x, u3 = y, u4 = z.
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Denote Alice’s strategy by uA and Bob’s by uB , the payoffs in equation (3) can be written
as {

$A = $A(uA, uB) = ∑
ij,kl $A

ij,kl · ui
Au

j

Auk
Bul

B

$B = $B(uA, uB) = ∑
ij,kl $B

ij,kl · ui
Bu

j

Buk
Aul

A

(6)

where i, j, k, l run from 1 to 4,
(
$A

ij,kl

)
and

(
$B

ij,kl

)
are certain tensors. The formulation of(

$A
ij,kl

)
and

(
$B

ij,kl

)
in equation (6) is not uniquely determined. However, if restricted to be

symmetric, i.e. $A
ij,kl = $A

ji,kl = $A
ij,lk and $B

ij,kl = $B
ji,kl = $B

ij,lk (this can always be
done), they both can be uniquely determined. The calculations for

(
$A

ij,kl

)
and(

$B
ij,kl

)
can be found in appendix A. Equations (6) are actually very general formulations for

any static quantum game expressed as in table 1 and figure 1 (the gate Ĵ † prior to measurement
can even be replaced by another unitary transformation, not necessarily the inverse of Ĵ ). All
the structural information of the game, including the classical payoff table and the physical
model, is represented by the tensors

(
$A

ij,kl

)
and

(
$B

ij,kl

)
. In the Prisoners’ Dilemma, we have

$A
ij,kl ≡ $B

ij,kl due to the symmetric structure of the game. In an asymmetric game,
(
$A

ij,kl

)
does

not necessarily equal
(
$B

ij,kl

)
.

Defining $ij,kl ≡ $A
ij,kl ≡ $B

ij,kl , equation (6) can be re-expressed as{
$A(uA, uB) = ∑

ij

(∑
kl $ij,kl · uk

Bul
B

)
ui

Au
j

A = uA · P (uB) · uT
A

$B (uA, uB) = ∑
ij

(∑
kl $ij,kl · uk

Aul
A

)
ui

Bu
j

B = uB · P (uA) · uT
B

(7)

where P(u) is a symmetric matrix as a function of u, whose i, j th element satisfies

(P (u))ij =
∑
kl

$ij,kl · ukul. (8)

Let (u∗
A, u∗

B) be a Nash equilibrium of the game, we can see that, from equation (7),
uA · P(u∗

B) · uT
A reaches its maximum at uA = u∗

A and simultaneously uB · P(u∗
A) · uT

B reaches
its maximum at uB = u∗

B . In terms of game theory, we say that u∗
A dominates u∗

B and u∗
B

dominates u∗
A. Together with u∗

A ·(u∗
A)T = u∗

B ·(u∗
B)T = 1, we can conclude that u∗

A (u∗
B) must

be the eigenvector of P(u∗
B) (P(u∗

A)) which corresponds to the maximal eigenvalue, and the
corresponding eigenvalue is exactly the payoff for Alice (Bob) at this Nash equilibrium. This
analysis also tells that the dominant strategy against a given strategy u must be the eigenvector
of P(u) that corresponds to the maximal eigenvalue.

In the following, we will first investigate the general Prisoners’ Dilemma in the case
that the strategic space is restricted to be the two-parameter subset of SU(2) as given in [4].
Then we investigate this game when the players are allowed to adopt any unitary strategic
operations. Here we shall note that some authors [15] have argued that the restriction on the
strategic space given in [4] has no physical basis, and it does restrict generality. However,
apart from these arguments, it is still an interesting case and a good instance to show how the
phase-transition-like behaviour originates. Yet the particular results achieved hold only for
this very specific set of strategies.

3. Two-parameter set of strategies

In the case of a two-parameter set of strategies, the strategic space S is restricted to the
two-parameter subset of SU(2) as follows [4]:

Û(θ, ϕ) =
(

eiϕ cos θ/2 sin θ/2
−sin θ/2 e−iϕ cos θ/2

)
(9)

with θ ∈ [0, π] and ϕ ∈ [0, π/2].
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As illustrated in detail by Eisert et al [4], in order to guarantee that the classical Prisoners’
Dilemma is faithfully represented, the form of Ĵ should be

Ĵ = eiγ D̂⊗D̂/2 = cos
γ

2
Ĉ ⊗ Ĉ + i sin

γ

2
D̂ ⊗ D̂ (10)

where Ĉ = Û(0, 0), D̂ = Û(π, 0) and γ ∈ [0, π/2] is in fact a measure for the game’s
entanglement.

Equation (9) can be rewritten as

Û(θ, ϕ) = cos
θ

2
cos ϕ · Î 2 + sin

θ

2
· iσ̂y + cos

θ

2
sin ϕ · iσ̂z

= w · Î 2 + y · iσ̂y + z · iσ̂z (11)

where w = cos θ
2 cos ϕ, y = sin θ

2 , z = cos θ
2 sin ϕ. Obviously we have w, y, z ∈ [0, 1] and

Û(θ, ϕ) ∈ SU(2) implies that w2 + y2 + z2 = 1. Since Û(θ, ϕ) and −Û(θ, ϕ) represent the
same strategy, it is enough to restrict ourselves with w, y, z ∈ [−1, 1]. Therefore, in the case
of a two-parameter set of strategies, Û(θ, ϕ) can be represented by a three-dimensional real
vector

u = (w, y, z) ∈ R
3 (12)

with u · uT = w2 + y2 + z2 = 1. Equations (6)–(8) will remain in their forms, except
that all the indices run only from 1 to 3, rather than from 1 to 4. Obviously we have
Ĉ ∼ (1, 0, 0), D̂ ∼ (0, 1, 0), Q̂ ∼ (0, 0, 1), in which ‘∼’ means ‘represent (by)’. In the
remainder of this paper, we do not distinguish a unitary operator and the corresponding vector
(three-dimensional or four-dimensional), as long as there is no ambiguity.

In [9], we investigated this game in the case that (r, p, t, s) = (3, 1, 5, 0) and observed
the phenomenon that are very much like phase transitions. In the generalized quantum
Prisoners’ Dilemma, such phase-transition-like behaviour still exists. In fact, there exist
two thresholds for the game’s entanglement, γth1 = arcsin

√
(p − s)/(t − s) and γth2 =

arcsin
√

(t − r)/(t − s). We hereby prove that, for 0 � γ < γth1, the strategic profile D̂ ⊗ D̂

is the Nash equilibrium with payoffs $A = $B = p. For γth2 < γ � π/2, the strategic profile
Q̂ ⊗ Q̂ is the Nash equilibrium with payoffs $A = $B = r . If γth1 < γth2 and γth1 � γ � γth2,
the game has two Nash equilibria D̂ ⊗ Q̂ and Q̂⊗ D̂. The payoff for the player who adopts D̂

is s + (t − s) cos2 γ while for the player who adopts Q̂ is s + (t − s) sin 2γ . While if γth2 < γth1

and γth2 � γ � γth1, both D̂ ⊗ D̂ and Q̂ ⊗ Q̂ are Nash equilibria of the game. We obtain
these conclusions through the following steps:

Assuming one player adopts strategy D̂, the payoff for the other as a function of his/her
strategy u is

u · P(D̂) · uT (13)

where the explicit expression of P(D̂) is (the calculation could be found in appendix B)

P(D̂) =

s 0 0

0 p 0
0 0 s + (t − s) sin 2γ


 . (14)

If 0 � γ < γth1 = arcsin
√

(p − s)/(t − s), the maximal eigenvalue of P(D̂) is p, and the
corresponding eigenvector is (0, 1, 0) ∼ D̂. If γth1 < γ � π/2, the maximal eigenvalue of
P(D̂) is s + (t − s) sin 2γ , and the corresponding eigenvector is (0, 0, 1) ∼ Q̂. Therefore, D̂
dominates D̂ for 0 � γ < γth1 while Q̂ dominates D̂ for γth1 < γ � π/2. For the same time
we have $A(D̂, D̂) = $B(D̂, D̂) = p and $A(Q̂, D̂) = $B(D̂, Q̂) = s + (t − s) sin 2γ .
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Figure 2. The payoff function of Alice with respect to the amount of entanglement in
the case of two-parameter strategies. The numerical values in the payoff matrix are set as
(r = 3, p = 1, t = 5, s = 0) such that r + p < t + s. The region between two thresholds
is the transitional region from classical to quantum, in which the game has two asymmetric Nash
equilibria although the game is symmetric with respect to the interchange of the players.

Assuming one player adopts strategy Q̂, the payoff for the other as a function of his/her
strategy u is

u · P(Q̂) · uT (15)

where the explicit expression of P(Q̂) is (the calculation can be found in appendix B)

P(Q̂) =

r − (r − p) sin 2γ 0 0

0 t − (t − s) sin 2γ 0
0 0 r


 . (16)

If 0 � γ < γth2 = arcsin
√

(t − r)/(t − s), the maximal eigenvalue of P(Q̂) is
t − (t − s) sin 2γ , and the corresponding eigenvector is (0, 1, 0) ∼ D̂. If γth2 < γ � π/2,
the maximal eigenvalue of P(Q̂) is r, and the corresponding eigenvector is (0, 0, 1) ∼ Q̂.
Therefore, D̂ dominates Q̂ for 0 � γ < γth2 while Q̂ dominates Q̂ for γth2 < γ � π/2.
For the same time we have $A(Q̂, Q̂) = $B(Q̂, Q̂) = r and $A(D̂, Q̂) = $B(Q̂, D̂) =
t − (t − s) sin 2γ = s + (t − s) cos2 γ .

From the above analysis, we can see that when 0 � γ < γth1, D̂ ⊗ D̂ is a Nash
equilibrium of the game, and when γth2 < γ � π/2, Q̂ ⊗ Q̂ is a Nash equilibrium of the
game. If γth1 < γth2 and γth1 � γ � γth2, D̂ dominates Q̂ and Q̂ dominates D̂, hence both
D̂ ⊗ Q̂ and Q̂ ⊗ D̂ are Nash equilibria of the game. While if γth2 < γth1 and γth2 � γ � γth1,
both D̂ ⊗ D̂ and Q̂ ⊗ Q̂ are Nash equilibria of the game. The corresponding payoffs are also
obtained.

In the case that the entries in the payoff table are taken as (r = 3, p = 1, t = 5, s = 0),
which has been investigated in [9], the game has two thresholds for the amount of the
game’s entanglement. Due to the two thresholds, the game is divided into three regions,
the classical region, the quantum region and the transitional region from classical to quantum.
In the general quantum Prisoners’ Dilemma, there still exist two thresholds and the phase-
transition-like behaviour shows up again. However, the situation may be more complicated
because the two thresholds have no deterministic relations in magnitude. In fact, the case that
(r = 3, p = 1, t = 5, s = 0) is just an instance of the more general case of r + p < t + s. For
the game under this condition, it is obvious that γth1 < γth2 and the game behaves similarly to
the one with (r = 3, p = 1, t = 5, s = 0). Figure 2 depicts the payoff of Alice as a function of
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Figure 3. The payoff function of Alice with respect to the amount of the entanglement in
the case of two-parameter strategies. The numerical values in the payoff matrix are set as
(r = 3, p = 2, t = 5, s = 0) such that r + p = t + s. The two thresholds converge to a
unique one γth and the transitional region no longer exists.

γ when both players resort to Nash equilibrium in the case of r + p < t + s. In the transitional
regions, the two Nash equilibria are fully equivalent. Since there is no communication between
two players, one player will have no idea which equilibrium strategy the other player chooses.
So the strategy mismatch situation will probably occur. A more severe problem is that, since
strategy D̂ will lead to a better payoff, both players will be tempted to choose D̂ and the final
payoff for both of them will become p, which happens to be the catch of the dilemma in the
classical game.

An interesting situation is, as we can see, if γth1 = γth2, the transitional region will
disappear. The condition γth1 = γth2 implies that

r + p = t + s. (17)

Note that we should keep in mind that the basic condition t > r > p > s must be satisfied
to maintain the properties of the classical game. And under the condition in equation (17) the
game has only one threshold for its entanglement γth = γth1 = γth2. Hence the game exhibits
only two regions, one is classical and the other is quantum. The transitional region in which
the game has two asymmetric Nash equilibrium disappears. Under the conditions r +p = t + s

and t > r > p > s, we plot the payoff of Alice as a function of γ in figure 3 when both
players resort to Nash equilibrium.

Now we consider what would happen in the game of r + p > t + s. In this case, we have
γth1 > γth2. Therefore, the game has no transitional region, hence neither D̂ ⊗ Q̂ nor Q̂⊗ D̂ is
a Nash equilibrium of the game. However, both D̂ ⊗ D̂ and Q̂ ⊗ Q̂ are still Nash equilibria in
the region γth2 � γ � γth1. So for γth2 � γ � γth1, a new region—coexistent region—arises
with two Nash equilibria. These two Nash equilibria are both symmetric with respect to the
interchange of the two players. In this case, we illustrate the payoff of Alice as a function of γ

in figure 4. We should also note that in this case the multiple Nash equilibria bring a situation
different to that in the transitional regions with r + p < t + s. The two Nash equilibria are not
equivalent and Q̂ ⊗ Q̂ gives higher payoffs to both players than does D̂ ⊗ D̂. Therefore, it
is a quite reasonable assumption that the players are most likely to resort to the equilibrium
Q̂ ⊗ Q̂ rather than D̂ ⊗ D̂, since they are both trying to maximize their individual payoffs.
However, one still cannot claim that the players will definitely resort to the equilibrium that



6558 J Du et al

Figure 4. The payoff function of Alice with respect to the amount of entanglement in
the case of two-parameter strategies. The numerical values in the payoff matrix are set as
(r = 3, p = 2, t = 4, s = 0) such that r + p > t + s. The coexistent region emerges, in
which both D̂ ⊗ D̂ and Q̂ ⊗ Q̂ are Nash equilibria.

gives higher payoffs. But if they do, the final results of the game will then be the same as in
the quantum region with γ > γth1, and the dilemma will be resolved.

An interesting question is whether the game can behave full quantum-mechanically no
matter how much it is entangled for some particular numerical value of (r, p, t, s), i.e. have
only the quantum region (without the presence of classical, transitional or coexistent regions).
If it can, we immediately deduce that γth2 = 0. This means t = r , which contradicts the basic
condition t > r > p > s. Hence the game cannot always have Q̂ ⊗ Q̂ as its equilibrium in
the whole domain of γ from 0 to π/2, as long as the game remains a ‘Prisoners’ Dilemma’.
In fact, as long as the condition t > r > p > s holds, neither of γth1 and γth2 could reach 0 or
π/2, hence none of the classical and quantum regions will disappear.

4. General unitary operations

In this section, we investigate the generalized quantum Prisoners’ Dilemma when both
the players can access any unitary operations as their strategies, rather than a restricted
subset as in equation (9). The method of analysis is clearly described in section 2.
The result is that there exists a boundary γB = arcsin

√
(p − s)/(p + t − r − s) for the

game’s entanglement. If γ < γB , there are infinite Nash equilibria. Any strategic profile
{(0, α, β, 0), (0, β, α, 0)} (α2 + β2 = 1) is a Nash equilibrium. Each of them results in the
same payoffs $A = $B = p + (r − p) sin2 γ . While as long as γ > γB , there will be no Nash
equilibrium for the game. We prove these results as follows.

For the strategy u1 = (0, α, β, 0) (α2 + β2 = 1), we have (the calculation can be found in
appendix A), with ε ≡ sin2 γ ,

P(u1) =




s + (t − s)α2ε 0 0 (s − t)αβε

0 p + (r − p)β2ε (r − p)αβε 0
0 (r − p)αβε p + (r − p)α2ε 0

(s − t)αβε 0 0 s + (t − s)β2ε


 . (18)
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The eigenvalues and corresponding eigenvectors of P((0, α, β, 0)) in equation (18) are


p (0, α,−β, 0)

s (β, 0, 0, α)

p + (r − p) sin2 γ (0, β, α, 0)

s + (t − s) sin2 γ (α, 0, 0,−β).

(19)

If γ < γB , the maximal eigenvalue is p + (r − p) sin2 γ and the corresponding eigenvector
is (0, β, α, 0). Therefore (0, β, α, 0) dominates (0, α, β, 0), and vice versa (by exchanging
α and β in equations (18) and (19)). Hence any strategic profile {(0, α, β, 0), (0, β, α, 0)}
(α2 + β2 = 1) is a Nash equilibrium.

While if γ > γB , the dominant strategy against (0, α, β, 0) turns to be (α, 0, 0,−β). For
the strategy u2 = (α, 0, 0,−β), we have (the calculation could be found in appendix A), with
ε ≡ sin2 γ ,

P(u2) =




r + (p − r)β2ε 0 0 (r − p)αβε

0 t + (s − t)α2ε (s − t)αβε 0
0 (s − t)αβε t + (s − t)β2ε 0

(r − p)αβε 0 0 r + (p − r)α2ε


 . (20)

And the eigenvalues and corresponding eigenvectors of P((α, 0, 0,−β)) in equation (20) are


r (α, 0, 0, β)

t (0, β,−α, 0)

r + (p − r) sin2 γ (β, 0, 0,−α)

t + (s − t) sin2 γ (0, α, β, 0).

(21)

In equation (21), (0, β,−α, 0) always corresponds to the maximal eigenvalue t. Therefore no
matter what the amount of entanglement is, (0, β,−α, 0) always dominates (α, 0, 0,−β).
With further analysis combining equations (19) and (21), we find that when γ >

γB , (α, 0, 0,−β) dominates (0, α, β, 0), (0, β,−α, 0) dominates (α, 0, 0,−β), (β, 0, 0, α)

dominates (0, β,−α, 0) and finally (0, α, β, 0) dominates (β, 0, 0, α). No pair of them can
form a Nash equilibrium. In fact, it can be proved that no pair of strategies in the region of
γ > γB can form a pure Nash equilibrium of the game. However, the game continues to have
mixed Nash equilibria [14].

We depict the payoff function of Alice as a function of the amount of entanglement when
both players resort to Nash equilibria (if there is one) in figure 5. This figure also exhibits the
phase-transition-like behaviour of the game. The boundary of entanglement divides the game
into two regions: in one the game has infinite Nash equilibria, while in the other the game has
no pure strategic Nash equilibrium.

5. Discussion and conclusion

In this paper, we investigate the discontinuous dependence of Nash equilibria and payoffs on
the game’s entanglement for the general quantum Prisoners’ Dilemma. This discontinuity
can be viewed as the phase-transition-like behaviour in the payoff-entanglement diagram. We
firstly investigate the generalized quantum Prisoners’ Dilemma when the strategic space is
restricted to a two-parameter subset of SU(2) as in [4]. With condition r +p < t + s, the game
exhibits the classical, quantum and transitional regions in its payoff-entanglement diagram.
The original Prisoners’ Dilemma with (r = 3, p = 1, t = 5, s = 0) is just an instance for
the general game with condition r + p < t + s. In the classical region D̂ ⊗ D̂ is the unique
Nash equilibrium, and in the quantum region the unique Nash equilibrium is Q̂⊗ Q̂. While in
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Figure 5. The payoff function of Alice with respect to the amount of the entanglement in the case
that both players are allowed to adopt any unitary operator as his/her strategy.

the transitional region, two asymmetric Nash equilibria, D̂ ⊗ Q̂ and Q̂ ⊗ D̂, emerge, each of
which leads to the asymmetric result of the game despite the symmetry of the game itself. If
the entries in the payoff table satisfy r + p = t + s, the transitional region will disappear. The
game has only one threshold for the amount of its entanglement at which the game transits
from classical to quantum discontinuously. In the case that r + p > t + s, a new region—
the coexistent region—emerges, replacing the transitional region. This new region is in fact
there where the classical region and the quantum region overlap. In the coexistent region, the
game has both D̂ ⊗ D̂ and Q̂ ⊗ Q̂ as its Nash equilibria. Since Q̂ ⊗ Q̂ is superior to D̂ ⊗ D̂,
one may expect both players to most likely choose Q̂ as his/her strategy, and the dilemma will
be resolved if they do so. We also explored the phase-transition-like behaviour of the quantum
game in the case where both players are allowed to adopt any unitary transformations as their
strategies. The game has a boundary for its entanglement, being a function of the numerical
values in the payoff table, below which the game has infinite Nash equilibria, while above
which the game has no pure strategic Nash equilibrium.

The phase-transition-like behaviour presented in this paper is very much like phase
transitions in real physical systems [12], not only phenomenally but also mathematically.
For a certain physical system whose Hamiltonian is dependent on some parameter, a special
case is that the eigenfunctions of the Hamiltonian are independent of the parameter even
though the eigenvalues vary with it. Then there can be a level-crossing where an excited level
becomes the ground state, creating a point of a non-analyticity of the ground state energy as
a function of the parameter, as well as a discontinuous dependence of the ground state on
the parameter. A quantum phase transition is hence viewed as any point of non-analyticity
in the ground state energy of the system concerned. In the generalized quantum Prisoners’
Dilemma, the dominant strategy against a given strategy u is the eigenvector that corresponds
to the maximal eigenvalue of matrix P(u) (see section 2). Since P(u) is a function of the
amount of entanglement γ , the eigenvalues may cross. This eigenvalue-crossing makes the
eigenvector that corresponds to the maximal eigenvalue change discontinuously. It also creates
a non-analyticity of the payoff (the maximal eigenvalue) as a function of γ , and the game
exhibits phase-transition-like behaviour. The method proposed in this paper should help to
illuminate the origin of the phase-transition-like behaviour of quantum games, and we hope
it should further help investigate quantum games more intensively, and more profound results
may be derived.
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Appendix A. Calculations for general unitary operations

Denote Alice’s strategy by uA = (
u1

A, u2
A, u3

A, u4
A

)
and Bob’s by uB = (

u1
B, u2

B, u3
B, u4

B

)
, then

substituting equation (4) into equation (2), we have

|ψf 〉 = [(
u1

Au1
B − u4

Au4
B

)
+ i

(
u4

Au1
B + u1

Au4
B

)
cos γ − (

u3
Au2

B + u2
Au3

B

)
sin γ

] |CC〉
+

[−(
u1

Au3
B + u4

Au2
B

)
+ i

(
u1

Au2
B − u4

Au3
B

)
cos γ +

(
u3

Au4
B − u2

Au1
B

)
sin γ

] |CD〉
+

[−(
u3

Au1
B + u2

Au4
B

)
+ i

(
u2

Au1
B − u3

Au4
B

)
cos γ +

(
u4

Au3
B − u1

Au2
B

)
sin γ

] |DC〉
+

[(
u3

Au3
B − u2

Au2
B

) − i
(
u3

Au2
B + u2

Au3
B

)
cos γ +

(
u4

Au1
B + u1

Au4
B

)
sin γ

] |DD〉.
(A.1)

Since the game is symmetric with respect to the interchange of the players, we have

$A(uA, uB) ≡ $B(uB, uA) ∀uA, uB ∈ SU(2) (A.2)

and we can immediately see from equation (6) that

$A
ij,kl ≡ $B

ij,kl i, j = 1, 2, 3, 4. (A.3)

And P(u) (in equation (8)) is symmetric too. Therefore we can define $ij,kl ≡ $A
ij,kl ≡ $B

ij,kl for
convenience. Substituting equation (A.1) into equations (3) and (6), we can find the non-zero
elements of ($ij,kl) are (with $ij,kl = $ji,kl = $ij,lk = $ji,lk)

$11,11 = $44,44 = r $11,33 = $44,22 = s

$22,22 = $33,33 = p $22,44 = $33,11 = t

$11,22 = $44,33 = s + (t − s) sin2 γ $11,44 = $44,11 = r + (p − r) sin2 γ

$22,11 = $33,44 = t + (s − t) sin2 γ $22,33 = $33,22 = p + (r − p) sin2 γ

$12,13 = −$34,24 = 1
2 (s − r) sin γ $12,24 = −$34,13 = 1

2 (t − p) sin γ

$13,12 = −$24,34 = 1
2 (t − r) sin γ $13,34 = −$24,12 = 1

2 (p − s) sin γ

$14,14 = −$23,23 = 1
2 (p − r) sin2 γ $14,23 = −$23,14 = 1

2 (s − t) sin2 γ.

(A.4)

For strategy (0, α, β, 0), we see that

(P ((0, α, β, 0)))ij = (P ((0, α, β, 0)))ji

= α2$ij,22 + β2$ij,33 + αβ($ij,23 + $ij,32)

= α2$ij,22 + β2$ij,33 + 2αβ$ij,23 (A.5)

and for (α, 0, 0,−β) we have

(P ((α, 0, 0,−β)))ij = (P ((α, 0, 0,−β)))ji

= α2$ij,11 + β2$ij,44 − αβ($ij,14 + $ij,41)

= α2$ij,11 + β2$ij,44 − 2αβ$ij,14. (A.6)

Therefore equations (18) and (20) are obtained.
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Appendix B. Calculations for two-parameter strategic space

The two-parameter strategic space can be obtained by restricting u2 = x ≡ 0 in the general case
(u2 = x is the second component of u, not its squared length). Therefore the expressions for
$ij,kl can be obtained from equations (A.4), by excluding all elements containing the index 2,
and then replacing indices 3 by 2 and 4 by 3. Therefore, for the case of two-parameter strategic
space, we have all the non-zero elements (with $ij,kl = $ji,kl = $ij,lk = $ji,lk) as follows:

$11,11 = $33,33 = r $11,22 = s $22,22 = p $22,11 = t

$33,22 = s + (t − s) sin2 γ $11,33 = $33,11 = r + (p − r) sin2 γ

$22,33 = t + (s − t) sin2 γ $13,13 = 1
2 (p − r) sin2 γ

$23,12 = 1
2 (p − t) sin γ $12,23 = 1

2 (p − s) sin γ.

(B.1)

Since D̂ ∼ (0, 1, 0) and Q̂ ∼ (0, 0, 1), it is obvious to see that

(P (D̂))ij = (P (D̂))ji = $ij,22 (B.2)

(P (Q̂))ij = (P (Q̂))ji = $ij,33 (B.3)

with i, j = 1, 2, 3. The expressions in equations (14) and (16) are hence obtained.
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